Victron Bluesolar MPPT:


A solar charger gathers energy from your solar panels, and stores it in your batteries. Using the latest, fastest technology, BlueSolar maximises this energy-harvest, driving it intelligently to achieve full charge in the shortest possible time. BlueSolar maintains battery health, extending its life.
 

PWM and MPPT charge controllers are both widely used to charge batteries with solar power. The PWM controller is in essence a switch that connects a solar array to the battery. The result is that the voltage of the array will be pulled down to near that of the battery. The MPPT controller is more sophisticated (and more expensive): it will adjust its input voltage to harvest the maximum power from the solar array and then transform this power to supply the varying voltage requirement of the battery plus load. Thus, it essentially decouples the array and battery voltages so that there can be, for example, a 12 volt battery on one side of the MPPT charge controller and panels wired in series to produce 36 volts on the other.

It is generally accepted that MPPT will outperform PWM in a cold to temperate climate, while both controllers will show approximately the same performance in a subtropical to tropical climate. Besides performing the function of a basic controller, an MPPT controller also includes a DC to DC voltage converter, converting the voltage of the array to that required by the batteries, with very little loss of power.

An MPPT controller attempts to harvest power from the array near its Maximum Power Point, whilst supplying the varying voltage requirements of the battery plus load. Thus, it essentially decouples the array and battery voltages, so that there can be a 12 volt battery on one side of the MPPT charge controller and two 12 Vpanels wired in series to produce 36 volts on the other. If connected to a PV array with a substantially higher nominal voltage than the battery voltage, an MPPT controller will therefore provide charge current even at very high cell temperatures or in low irradiance conditions when a PWM controller would not help much.

As array size increases, both cabling cross sectional area and cable length will increase. The option to wire more panels in series and thereby decrease current, is a compelling reason to install an MPPT controller as soon as the array power exceeds a few hundred Watts (12 V battery), or several 100 Watts (24 V or 48 V battery)

 

Features:

Ultra-fast Maximum Power Point Tracking (MPPT)- Especially in case of a clouded sky, when light intensity is changing continuously, an ultra-fast MPPT controller will improve energy harvest by up to 30% compared to PWM charge controllers and by up to 10% compared to slower MPPT controllers.

Load output- Over-discharge of the battery can be prevented by connecting all loads to the load output. The load output will disconnect the load when the battery has been discharged to a pre-set voltage. Alternatively, an intelligent battery management algorithm can be chosen: see Battery Life. The load output is short circuit proof. Some loads (especially inverters) can best be connected directly to the battery, and the inverter remote control connected to the load output. A special interface cable may be needed, please see the manual.

Battery Life: intelligent battery management- When a solar charge controller is not able to recharge the battery to its full capacity within one day, the result is often that the battery will continually be cycled between a ‘partially charged’ state and the ‘end of discharge’ state. This mode of operation (no regular full recharge) will destroy a lead-acid battery within weeks or months. The Battery Life algorithm will monitor the state of charge of the battery and, if needed, day by day slightly increase the load disconnect level (i.e. disconnect the load earlier) until the harvested solar energy is sufficient to recharge the battery to nearly the full 100%. From that point onwards the load disconnect level will be modulated so that a nearly 100% recharge is achieved about once every week.

Programmable battery charge algorithm- See the software section on our website for details

Day/night timing and light dimming option- See the software section on our website for details

Programming, real-time data and history display options- Color Control GX or other GX devices: see the Venus documents on our website. A smartphone or other Bluetooth-enabled device: VE.Direct Bluetooth Smart dongle needed.

 

 
 
 

 

BlueSolar Charge Controller

 

 

MPPT 75/10

 

 

MPPT 75/15

 

 

MPPT 100/15

 

 

Battery voltage

 

 

12/24V Auto Select

 

 

Rated charge current

 

 

10A

 

 

15A

 

 

15A

 

 

Nominal PV power, 12V 1a,b)

 

 

145W

 

 

220W

 

 

220W

 

 

Nominal PV power, 24V 1a,b)

 

 

290W

 

 

440W

 

 

440W

 

 

Max. PV short circuit current 2)

 

 

10A

 

 

15A

 

 

15A

 

 

Automatic load disconnect

 

 

Yes, maximum load 15A

 

 

Maximum PV open circuit voltage

 

 

75V

 

 

100V

 

 

Peak efficiency

 

 

98%

 

 

Self-consumption

 

 

12V: 20 mA 24V: 10 mA

 

 

Charge voltage 'absorption'

 

 

14,4V / 28,8V (adjustable)

 

 

Charge voltage 'float'

 

 

13,8V / 27,6V (adjustable)

 

 

Charge algorithm

 

 

multi-stage adaptive

 

 

Temperature compensation

 

 

-16 mV / °C resp. -32 mV / °C

 

 

Continuous/peak load current

 

 

15A / 50A

 

 

Low voltage load disconnect

 

 

11,1V / 22,2V or 11,8V / 23,6V

 

 

or Battery Life algorithm

 

 

Low voltage load reconnect

 

 

13,1V/26,2Vor14V/28V

 

 

or Battery Lifealgorithm

 

 

Protection

 

 

Battery reverse polarity (fuse)

 

 

Output short circuit / Over temperature

 

 

Operating temperature

 

 

-30 to +60°C (full rated output up to 40°C)

 

 

Humidity

 

 

95%, non-condensing

 

 

Data communication port

 

 

VE.Direct

 

 

See the data communication white paper on our website

 

 

ENCLOSURE

 

 

Colour

 

 

Blue (RAL 5012)

 

 

Power terminals

 

 

6 mm² / AWG10

 

 

Protection category

 

 

IP43 (electronic components), IP22 (connection area)

 

 

Weight

 

 

0,5 kg

 

 

Dimensions (h x w x d)

 

 

100 x 113 x 40 mm

 

 

STANDARDS

 

 

Safety

 

 

EN/IEC 62109-1, UL 1741, CSA C22.2

 

 

1a) If more PV power is connected, the controller will limit input power. 1b) PV voltage must exceed Vbat + 5V for the controller to start.

 

 

Thereafter minimum PV voltage is Vbat + 1V

 

 

2) A PV array with a higher short circuit current may damage the controller.

 

Victron Bluesolar 75/15 spec Sheet-

 

Victron Bluesolar 75/15 manual-

 

Victron MPPT Overview-

 

Victron inverting Remote On-Off Cable-

 

Adding Dimming Functionality to Solar Lighting System-

 

Victron Bluesolar 75/15 dimensions-

 

SKU SCC010015050R
Barcode # 8719076025320
Brand Victron
Shipping Weight 2.0000kg

Bluesolar Mppt 75/15

SKU: SCC010015050R
Sale price
$141.99
RRP $176.00
Earn 1,410 Outback Rewards Points
Sale price
$141.99
DON'T PAY RRP $176.00
PayPal Checkout
4 payments of $35.50

afterpay More info.

Make 4 payments of $35.50 over 8 weeks and get it now!

zipMoney
From $10 / week
Afterpay
4 payments of $35.50

Calculate Shipping

Victron Bluesolar MPPT:


A solar charger gathers energy from your solar panels, and stores it in your batteries. Using the latest, fastest technology, BlueSolar maximises this energy-harvest, driving it intelligently to achieve full charge in the shortest possible time. BlueSolar maintains battery health, extending its life.
 

PWM and MPPT charge controllers are both widely used to charge batteries with solar power. The PWM controller is in essence a switch that connects a solar array to the battery. The result is that the voltage of the array will be pulled down to near that of the battery. The MPPT controller is more sophisticated (and more expensive): it will adjust its input voltage to harvest the maximum power from the solar array and then transform this power to supply the varying voltage requirement of the battery plus load. Thus, it essentially decouples the array and battery voltages so that there can be, for example, a 12 volt battery on one side of the MPPT charge controller and panels wired in series to produce 36 volts on the other.

It is generally accepted that MPPT will outperform PWM in a cold to temperate climate, while both controllers will show approximately the same performance in a subtropical to tropical climate. Besides performing the function of a basic controller, an MPPT controller also includes a DC to DC voltage converter, converting the voltage of the array to that required by the batteries, with very little loss of power.

An MPPT controller attempts to harvest power from the array near its Maximum Power Point, whilst supplying the varying voltage requirements of the battery plus load. Thus, it essentially decouples the array and battery voltages, so that there can be a 12 volt battery on one side of the MPPT charge controller and two 12 Vpanels wired in series to produce 36 volts on the other. If connected to a PV array with a substantially higher nominal voltage than the battery voltage, an MPPT controller will therefore provide charge current even at very high cell temperatures or in low irradiance conditions when a PWM controller would not help much.

As array size increases, both cabling cross sectional area and cable length will increase. The option to wire more panels in series and thereby decrease current, is a compelling reason to install an MPPT controller as soon as the array power exceeds a few hundred Watts (12 V battery), or several 100 Watts (24 V or 48 V battery)

 

Features:

Ultra-fast Maximum Power Point Tracking (MPPT)- Especially in case of a clouded sky, when light intensity is changing continuously, an ultra-fast MPPT controller will improve energy harvest by up to 30% compared to PWM charge controllers and by up to 10% compared to slower MPPT controllers.

Load output- Over-discharge of the battery can be prevented by connecting all loads to the load output. The load output will disconnect the load when the battery has been discharged to a pre-set voltage. Alternatively, an intelligent battery management algorithm can be chosen: see Battery Life. The load output is short circuit proof. Some loads (especially inverters) can best be connected directly to the battery, and the inverter remote control connected to the load output. A special interface cable may be needed, please see the manual.

Battery Life: intelligent battery management- When a solar charge controller is not able to recharge the battery to its full capacity within one day, the result is often that the battery will continually be cycled between a ‘partially charged’ state and the ‘end of discharge’ state. This mode of operation (no regular full recharge) will destroy a lead-acid battery within weeks or months. The Battery Life algorithm will monitor the state of charge of the battery and, if needed, day by day slightly increase the load disconnect level (i.e. disconnect the load earlier) until the harvested solar energy is sufficient to recharge the battery to nearly the full 100%. From that point onwards the load disconnect level will be modulated so that a nearly 100% recharge is achieved about once every week.

Programmable battery charge algorithm- See the software section on our website for details

Day/night timing and light dimming option- See the software section on our website for details

Programming, real-time data and history display options- Color Control GX or other GX devices: see the Venus documents on our website. A smartphone or other Bluetooth-enabled device: VE.Direct Bluetooth Smart dongle needed.

 

 
 
 

 

BlueSolar Charge Controller

 

 

MPPT 75/10

 

 

MPPT 75/15

 

 

MPPT 100/15

 

 

Battery voltage

 

 

12/24V Auto Select

 

 

Rated charge current

 

 

10A

 

 

15A

 

 

15A

 

 

Nominal PV power, 12V 1a,b)

 

 

145W

 

 

220W

 

 

220W

 

 

Nominal PV power, 24V 1a,b)

 

 

290W

 

 

440W

 

 

440W

 

 

Max. PV short circuit current 2)

 

 

10A

 

 

15A

 

 

15A

 

 

Automatic load disconnect

 

 

Yes, maximum load 15A

 

 

Maximum PV open circuit voltage

 

 

75V

 

 

100V

 

 

Peak efficiency

 

 

98%

 

 

Self-consumption

 

 

12V: 20 mA 24V: 10 mA

 

 

Charge voltage 'absorption'

 

 

14,4V / 28,8V (adjustable)

 

 

Charge voltage 'float'

 

 

13,8V / 27,6V (adjustable)

 

 

Charge algorithm

 

 

multi-stage adaptive

 

 

Temperature compensation

 

 

-16 mV / °C resp. -32 mV / °C

 

 

Continuous/peak load current

 

 

15A / 50A

 

 

Low voltage load disconnect

 

 

11,1V / 22,2V or 11,8V / 23,6V

 

 

or Battery Life algorithm

 

 

Low voltage load reconnect

 

 

13,1V/26,2Vor14V/28V

 

 

or Battery Lifealgorithm

 

 

Protection

 

 

Battery reverse polarity (fuse)

 

 

Output short circuit / Over temperature

 

 

Operating temperature

 

 

-30 to +60°C (full rated output up to 40°C)

 

 

Humidity

 

 

95%, non-condensing

 

 

Data communication port

 

 

VE.Direct

 

 

See the data communication white paper on our website

 

 

ENCLOSURE

 

 

Colour

 

 

Blue (RAL 5012)

 

 

Power terminals

 

 

6 mm² / AWG10

 

 

Protection category

 

 

IP43 (electronic components), IP22 (connection area)

 

 

Weight

 

 

0,5 kg

 

 

Dimensions (h x w x d)

 

 

100 x 113 x 40 mm

 

 

STANDARDS

 

 

Safety

 

 

EN/IEC 62109-1, UL 1741, CSA C22.2

 

 

1a) If more PV power is connected, the controller will limit input power. 1b) PV voltage must exceed Vbat + 5V for the controller to start.

 

 

Thereafter minimum PV voltage is Vbat + 1V

 

 

2) A PV array with a higher short circuit current may damage the controller.

 

Victron Bluesolar 75/15 spec Sheet-

 

Victron Bluesolar 75/15 manual-

 

Victron MPPT Overview-

 

Victron inverting Remote On-Off Cable-

 

Adding Dimming Functionality to Solar Lighting System-

 

Victron Bluesolar 75/15 dimensions-

 

SKU SCC010015050R
Barcode # 8719076025320
Brand Victron
Shipping Weight 2.0000kg